

Course Title: Atomic Physics and Spectroscopy

Course Code: 342PHYS

Program: Physics

Department: Physics

College: Science

Institution: Jazan University

Version: **2022**

Last Revision Date: 20 December 2022

Table of Contents:

Content	Page
A. General Information about the course	
Teaching mode Contact Hours	
B. Course Learning Outcomes, Teaching Strategies and Assessment Methods	
C. Course Content	
D. Student Assessment Activities	
E. Learning Resources and Facilities	
1. References and Learning Resources	
2. Required Facilities and Equipment	
F. Assessment of Course Quality	
G. Specification Approval Data	

A. General information about the course:

Со	Course Identification						
1.	Credit hours: 4						
2.	2. Course type						
а	University □	College □	Department⊠	Track□	Others□		
b Required ⊠ Elective□							
3.	3. Level/vear at which this course is						

3. Level/year at which this course is offered: 11/4

4. Course General Description

The course provides background knowledge of major discoveries and models relating to the atom such as Rutherford model, Bohr model and interpretation of the spectral series of the hydrogen atom, Sommerfeld model, quantum theory achievements (energy levels, Quantum numbers, electron spin and orbital angular momentum, and orbital-spin interaction). The course also covers the rules of atomic emission as well as the effect of magnetic and electric field on the atom. A series of compulsory practical exercises are undertaken to demonstrate the principles involved

- 5. Pre-requirements for this course (if any):341Phys
- 6. Co- requirements for this course (if any):non

7. Course Main Objective(s)

This course is designed to provide students with:

- The fundamental of the atomic structure.
- The essential concepts of orbital motion, spin of the electron and fine structure.
- The effect of magnetic and electric field on the atom
- The spectral line emission and related rules.
- Practical exercises are undertaken.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	60	91%
2.	E-learning		
3.	HybridTraditional classroomE-learning	6	9%
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	20
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	53

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	State Bohr postulates, Pauli's exclusion principle ,Quantum numbers, Selection rule,	PLO1.1	Lectures, blackboard and visualization, group and interactive guided discussion, Interactive discussion	Direct: (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student Survey
1.2	Outline Rutherford atom model, difficulties of Rutherford model, Bohr postulates, the failure of Bohr model, effect of magnetic field on atom, effect of electric field on atom, factors affecting	PLO1.2	Lectures, blackboard and visualization, group and interactive guided discussion, Interactive discussion	Direct: (formative and summative): In-class interactive questioning, quizzes,

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	spectral line broadening, and detection of spectral line.			written exams Indirect: student Survey
1.3	Describe Rutherford experiment for atom explanation, and Stern-Gerlach experiment.	PLO1.2	1.3	Describe Rutherford experiment for atom explanation, and Stern- Gerlach experiment.
2.0	Skills			
2.1	Solve problems related to the wavelengths of spectral lines of different series of hydrogen atoms, Rydberg constant, the orbital and spin magnetic moment of an electron, Zeeman splitting, LS coupling, and wavelengths of x-ray lines.	PLO2.1	2.1	problems related to the wavelengths of spectral lines of different series of hydrogen atom, Rydberg constant, the orbital and spin magnetic moment of an electron, Zeeman splitting, LS coupling, and wavelengths of x-ray lines.
2.2	Derive the total energy for hydrogen atom based on Bohr Model, based on Sommerfeld	PLO2.2	2.2	Derive the total energy for hydrogen

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	model, radius of different orbit in Bohr atom, velocity of electron in energy levels in Bohr atom, the orbital magnetic moment of an electron for Bohr atom and reveals by quantum mechanics.			atom based on Bohr Model, based on Sommerfeld model, radius of different orbit in Bohr atom, velocity of electron in energy levels in Bohr atom, the orbital magnetic moment of an electron for Bohr atom and reveals by quantum mechanics.
2.3	Discuss Electron spin resonance, Normal Zeeman effect, Anomalous Zeeman effect, Paschen Back effect, Stark effect.	PLO2.2	2.3	Discuss Electron spin resonance, Normal Zeeman effect, Anomalous Zeeman effect, Paschen Back effect, Stark effect.
2.4	Differentiate between Normal Zeeman effect, and Anomalous Zeeman, and between Anomalous Zeeman effect, and Paschen Back effect.	PLO2.2	2.4	Differentiate between Normal Zeeman effect, and

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods Anomalous Zeeman, and between Anomalous Zeeman effect, and Paschen Back effect.
3.0	Values, autonomy, and respons	sibility		
3.1	Show effective collaboration and bear individual responsibility during group work in lab and/or assignments and practice safety in lab	PLO3.1 PLO3.3	Interactive and Group discussion, expository and discovery teaching	Direct: (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student Survey
3.2	Develop competencies in communication, critical thinking and reporting during lab work, interactive discussion and group assignments.	PLO3.5	Interactive and Group discussion, expository and discovery teaching	Direct: (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student Survey

C. Course Content

No	List of Topics	Contact Hours
1. 1	Atom Concept: Rutherford model, Bohr postulates and Bohr model	10

	of hydrogen atom, Spectral series of hydrogen atom (Balmer, Lyman, Paschen, Brackett and Pfund), Spectrum of hydrogen like atoms, and Sommerfeld model.	
2. 2	Orbital, Spin and Fine structure: Quantum theory achievements (energy levels - quantum numbers), Magnetic moment of the orbital motion, Spin and magnetic moment of the electron, Stern and Gerlach experiment, Spin-Orbit interaction (LS coupling) and total angular momentum, Fine structure, and Term diagram, Pauli's exclusion principle, Selection Rule, and The Lamb shift.	10
3. 3	Atoms in a magnetic and Electric Fields: Electron spin resonance, Normal Zeeman effect Anomalous Zeeman effect, The Paschen Back effect, Stark effect, Factors affecting spectral line broadening (Doppler's width – Stark's width), and Detection of Spectral line.	9
4	X-ray emission and internal shells: X-ray radiation from outer shells, X-ray Bremsstrahlung spectra, X-ray characteristic radiation.	3
5	Review	1
	Total	33

Experimental Part:

No	List of Topics	Contact Hours
1	Balmer series of hydrogen and Hg visible spectrum Experiment.	3
2	Grating spectrometer (Hg, Na) Experiment.	7
3	X–ray Emission Experiment.	3
4	Frank–Hertz experiment.	3
5	Zeeman effect Experiment.	2
7	Review	2
	Total	20

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment- Contribution to interactive discussion	2	2 % (2)
2.	1 Quiz	4	2 % (2)
3.	Homework assignment- Contribution to the interactive discussion	5	2 % (2)
4.	Midterm-Exam	6	15 % (15)
5.	Quiz 2	7	2 % (2)
6.	Homework assignment- Contribution to the interactive discussion- Group work essay or Project discussion	7	2 % (2)
7.	Laboratory Work	11	25 % (25)
8.	Final Examination	12	50 % (50)

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	The Physics of Atom and Quanta; Hermann Hacken, and Hans Christoph Wolf; 7th ed Springer-Verlage 2005.
Supportive References	 Introduction to Atomic and Nuclear Physics; H. Semat, Holt McDougal; 5th edition 1972. Atomic Physics; C. Foot, Oxford University Press, USA; 1st edition, 2005.
Electronic Materials	https://www.britannica.com/science/atomic-physics http://www.atomicarchive.com/Physics/Physics1.shtml https://opentextbc.ca/physicstestbook2/chapter/introduction-to- atomic-physics/
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classroom
Technology equipment (projector, smart board, software)	Multimedia Projector
Other equipment (depending on the nature of the specialty)	Nuclear Physics Laboratory

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Peers, and Program Leader	Indirect (CES)- Indirect peer evaluation
Effectiveness of students assessment	Students, Program assessment committee	Direct/Indirect
Quality of learning resources	Instructor	Direct/Indirect
The extent to which CLOs have been achieved	Students, Faculty members	Indirect (CES)- Indirect peer evaluation
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	DEPARTMENT BOARD
REFERENCE NO.	PHYS2304
DATE	28/2/2023

Approved by:

Head of Physics Department

Dr. Hussain Alathlawi
